参考文章

优质文章:

归并排序概念

归并排序采用分治法,是一种高效且稳定的排序算法,归并排序的性能不受输入数据的影响。

算法思路

  1. 根据中点拆分
    1
    2
    3
    int mid = left + (right - left) / 2; // 计算中点
    mergeSort(nums, left, mid); // 递归左子数组
    mergeSort(nums, mid + 1, right); // 递归右子数组
  2. 合并
    1
    merge(nums, left, mid, right);

完整代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/* 归并排序 */
void mergeSort(int[] nums, int left, int right) {
// 终止条件
if (left >= right)
return; // 当子数组长度为 1 时终止递归
// 划分阶段
int mid = left + (right - left) / 2; // 计算中点
mergeSort(nums, left, mid); // 递归左子数组
mergeSort(nums, mid + 1, right); // 递归右子数组
// 合并阶段
merge(nums, left, mid, right);
}

/* 合并左子数组和右子数组 */
void merge(int[] nums, int left, int mid, int right) {
// 左子数组区间为 [left, mid], 右子数组区间为 [mid+1, right]
// 创建一个临时数组 tmp ,用于存放合并后的结果
int[] tmp = new int[right - left + 1];
// 初始化左子数组和右子数组的起始索引
int i = left, j = mid + 1, k = 0;
// 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while (i <= mid && j <= right) {
if (nums[i] <= nums[j])
tmp[k++] = nums[i++];
else
tmp[k++] = nums[j++];
}
// 将左子数组和右子数组的剩余元素复制到临时数组中
while (i <= mid) {
tmp[k++] = nums[i++];
}
while (j <= right) {
tmp[k++] = nums[j++];
}
// 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
for (k = 0; k < tmp.length; k++) {
nums[left + k] = tmp[k];
}
}

算法分析

  • 时间复杂度:O(nlogn)
    划分产生高度为 logn 的递归树,每层合并的总操作数量为 n,因此总体时间复杂度为 O(nlogn)。

  • 空间复杂度:O(n)
    递归深度为 logn,使用 O(logn) 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 O(n) 大小的额外空间。

  • 稳定排序:在合并过程中,相等元素的次序保持不变。

优势区间:链表排序

对于链表,归并排序相较于其他排序算法具有显著优势,可以将链表排序任务的空间复杂度优化至 O(1)。

  • 划分阶段:可以使用“迭代”替代“递归”来实现链表划分工作,从而省去递归使用的栈帧空间。
  • 合并阶段:在链表中,节点增删操作仅需改变引用(指针)即可实现,因此合并阶段(将两个短有序链表合并为一个长有序链表)无须创建额外链表。